Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2264055

ABSTRACT

Recently accumulating evidence has highlighted the rare occurrence of COVID-19 vaccination-induced inflammation in the central nervous system. However, the precise information on immune dysregulation related to the COVID-19 vaccination-associated autoimmunity remains elusive. Here we report a case of encephalitis temporally associated with COVID-19 vaccination, where single-cell RNA sequencing (scRNA-seq) analysis was applied to elucidate the distinct immune signature in the peripheral immune system. Peripheral blood mononuclear cells (PBMCs) were analyzed using scRNA-seq to clarify the cellular components of the patients in the acute and remission phases of the disease. The data obtained were compared to those acquired from a healthy cohort. The scRNA-seq analysis identified a distinct myeloid cell population in PBMCs during the acute phase of encephalitis. This specific myeloid population was detected neither in the remission phase of the disease nor in the healthy cohort. Our findings illustrate induction of a unique myeloid subset in encephalitis temporally associated with COVID-19 vaccination. Further research into the dysregulated immune signature of COVID-19 vaccination-associated autoimmunity including the cerebrospinal fluid (CSF) cells of central nervous system (CNS) is warranted to clarify the pathogenic role of the myeloid subset observed in our study.

2.
Front Immunol ; 14: 998233, 2023.
Article in English | MEDLINE | ID: covidwho-2264056

ABSTRACT

Recently accumulating evidence has highlighted the rare occurrence of COVID-19 vaccination-induced inflammation in the central nervous system. However, the precise information on immune dysregulation related to the COVID-19 vaccination-associated autoimmunity remains elusive. Here we report a case of encephalitis temporally associated with COVID-19 vaccination, where single-cell RNA sequencing (scRNA-seq) analysis was applied to elucidate the distinct immune signature in the peripheral immune system. Peripheral blood mononuclear cells (PBMCs) were analyzed using scRNA-seq to clarify the cellular components of the patients in the acute and remission phases of the disease. The data obtained were compared to those acquired from a healthy cohort. The scRNA-seq analysis identified a distinct myeloid cell population in PBMCs during the acute phase of encephalitis. This specific myeloid population was detected neither in the remission phase of the disease nor in the healthy cohort. Our findings illustrate induction of a unique myeloid subset in encephalitis temporally associated with COVID-19 vaccination. Further research into the dysregulated immune signature of COVID-19 vaccination-associated autoimmunity including the cerebrospinal fluid (CSF) cells of central nervous system (CNS) is warranted to clarify the pathogenic role of the myeloid subset observed in our study.


Subject(s)
COVID-19 , Encephalitis , Humans , COVID-19 Vaccines , Leukocytes, Mononuclear , Single-Cell Gene Expression Analysis , Myeloid Cells , Vaccination
3.
Virol J ; 19(1): 198, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2139350

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to major public health crises worldwide. Several studies have reported the comprehensive mRNA expression analysis of immune-related genes in patients with COVID-19, using blood samples, to understand its pathogenesis; however, the characteristics of RNA expression in COVID-19 and bacterial sepsis have not been compared. The current study aimed to address this gap. METHODS: RNA-sequencing and bioinformatics analyses were used to compare the transcriptome expression of whole blood samples from patients with COVID-19 and patients with sepsis who were admitted to the intensive care unit of Osaka University Graduate School of Medicine. RESULTS: The COVID-19 and sepsis cohorts showed upregulation of mitochondrial- and neutrophil-related transcripts, respectively. Compared with that in the control cohort, neutrophil-related transcripts were upregulated in both the COVID-19 and sepsis cohorts. In contrast, mitochondrial-related transcripts were upregulated in the COVID-19 cohort and downregulated in the sepsis cohort, compared to those in the control cohort. Moreover, transcript levels of the pro-apoptotic genes BAK1, CYCS, BBC3, CASP7, and CASP8 were upregulated in the COVID-19 cohort, whereas those of anti-apoptotic genes, such as BCL2L11 and BCL2L1, were upregulated in the sepsis cohort. CONCLUSIONS: This study clarified the differential expression of transcripts related to neutrophils and mitochondria in sepsis and COVID-19 conditions. Mitochondrial-related transcripts were downregulated in sepsis than in COVID-19 conditions, and our results indicated suboptimal intrinsic apoptotic features in sepsis samples compared with that in COVID-19 samples. This study is expected to contribute to the development of specific treatments for COVID-19.


Subject(s)
COVID-19 , Sepsis , Humans , COVID-19/genetics , Sepsis/genetics , SARS-CoV-2 , Intensive Care Units , RNA
4.
Mol Ther Nucleic Acids ; 29: 343-353, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-1977695

ABSTRACT

We evaluated mRNA and miRNA in COVID-19 patients and elucidated the pathogenesis of COVID-19, including protein profiles, following mRNA and miRNA integration analysis. mRNA and miRNA sequencing was done on admission with whole blood of 5 and 16 healthy controls (HCs) and 10 and 31 critically ill COVID-19 patients (derivation and validation cohorts, respectively). Interferon (IFN)-α2, IFN-ß, IFN-γ, interleukin-27, and IFN-λ1 were measured in COVID-19 patients on admission (day 1, 181 critical/22 non-critical patients) and days 6-8 (168 critical patients) and in 19 HCs. In the derivation cohort, 3,488 mRNA and 31 miRNA expressions were identified among differentially expressed RNA expressions in the patients versus those in HCs, and 2,945 mRNA and 32 miRNA expressions in the validation cohort. Canonical pathway analysis showed the IFN signaling pathway to be most activated. The IFN-ß plasma level was elevated in line with increased severity compared with HCs, as were IFN-ß downstream proteins, such as interleukin-27. IFN-λ1 was higher in non-critically ill patients versus HCs but lower in critical than non-critical patients. Integration of mRNA and miRNA analysis showed activated IFN signaling. Plasma IFN protein profile revealed that IFN-ß (type I) and IFN-λ1 (type III) played important roles in COVID-19 disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL